MATH 10550, EXAM 2 SOLUTIONS

(1) Find an equation for the tangent line to

$$
x^{2}+2 x y-y^{2}+x=2
$$

at the point $(1,2)$.
Solution: The equation of a line requires a point and a slope. The problem gives us the point so we only need to find the slope. Use implicit differentiation to get

$$
2 x+2 y+2 x y^{\prime}-2 y y^{\prime}+1=0
$$

Solve for y^{\prime}

$$
y^{\prime}=\frac{2 x+2 y+1}{2 y-2 x}
$$

And evaluate at $(x, y)=(1,2)$:

$$
y^{\prime}=\frac{2+4+1}{4-2}=\frac{7}{2}
$$

The line passing through $(1,2)$ with slope $\frac{7}{2}$ has the equation $y=\frac{7}{2}(x-1)+2=\frac{7}{2} x-\frac{3}{2}$.
(2) The mass of a rod of length 10 cm is given by $m(x)=x^{2}+\sqrt{x^{2}+9}-3$ grams. What is the linear density of the rod at $x=4 \mathrm{~cm}$?

Solution: The linear density is given by the derivative of the mass function. Calculate

$$
m^{\prime}(x)=2 x+\frac{x}{\sqrt{x^{2}+9}}
$$

So the linear density at $x=4$ is $m^{\prime}(4)=8+\frac{4}{\sqrt{16+9}}=8+\frac{4}{10}=\frac{44}{5} \mathrm{~g} / \mathrm{cm}$.
(3) A man starts walking north from point P at a rate of 4 miles per hour. At the same time, a woman starts jogging west from point P at a rate of 6 miles per hour. After 15 minutes, at what rate is the distance between them changing?

Solution: To keep things simple make point P the origin. Let $(x, 0)$ and $(0, y)$ be the positions of the woman and man at time t. Then their distance at t is

$$
d=\sqrt{x^{2}+y^{2}}
$$

Then

$$
d^{\prime}=\frac{x x^{\prime}+y y^{\prime}}{\sqrt{x^{2}+y^{2}}} .
$$

It is given that $x^{\prime}=6$ and $y^{\prime}=4$. At $t=\frac{1}{4}$,

$$
x=6 \cdot \frac{1}{4}=\frac{3}{2}, \quad y=4 \cdot \frac{1}{4}=1
$$

and

$$
d^{\prime}=\frac{\frac{3}{2} \cdot 6+1 \cdot 4}{\sqrt{\left(\frac{3}{2}\right)^{2}+1^{2}}}=\frac{13}{\frac{\sqrt{13}}{2}}=2 \sqrt{13}
$$

(4) Use a linear approximation to estimate $\sqrt[3]{(8.06)^{2}}$.

Solution: Take the function to be $f(x)=\sqrt[3]{x^{2}}=x^{2 / 3}$. Since $f(8)=8^{2 / 3}=(\sqrt[3]{8})^{2}=2^{2}=4$, the point $(8,4)$ will be a good place to base the estimate. The slope of the tangent line at $(8,4)$ is given by the derivative $f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}$ at $x=8: f^{\prime}(8)=\frac{2}{3} 8^{-1 / 3}=\frac{2}{3} \cdot \frac{1}{2}=\frac{1}{3}$. So the tangent line has the equation $y=\frac{1}{3}(x-8)+4$. Thus the linear approximation is $\frac{1}{3}(8.06-8)+4=\frac{1}{3}(0.06)+4=4.02$.
(5) Let

$$
f(x)=x^{4}-24 x^{2}+5 x+3
$$

Find the intervals where f is concave up.
Solution: f is concave up at a point x if $f^{\prime \prime}(x)>0$. We need to find all such x. Differentate once to get $f^{\prime}(x)=4 x^{3}-48 x+5$. And again to get $f^{\prime \prime}(x)=12 x^{2}-48$. Now solve the inequality

$$
\begin{aligned}
f^{\prime \prime}(x) & >0 \\
12 x^{2}-48 & >0 \\
12 x^{2} & >48 \\
x^{2} & >4
\end{aligned}
$$

The last line means either $x>2$ or $x<-2$. So the answer is $(-\infty,-2) \cup(2, \infty)$.
(6) Evaluate the limit

$$
\lim _{x \rightarrow \infty} \frac{2-3 x^{2}}{5 x^{2}+4 x}
$$

Solution: Factor out an x^{2} from top and bottom to get

$$
\lim _{x \rightarrow \infty} \frac{2-3 x^{2}}{5 x^{2}+4 x}=\lim _{x \rightarrow \infty} \frac{\frac{2}{x^{2}}-3}{5+\frac{4}{x}}=-\frac{3}{5}
$$

(7) Suppose f is continuous on $[2,5]$ and differentiable on $(2,5)$. If $f(2)=1$ and $f^{\prime}(x) \leq 3$ for $2 \leq x \leq 5$. According to the Mean Value Theorem, how large can $f(5)$ possibly be?

Solution: The mean value theorem says

$$
f^{\prime}(c)=\frac{f(5)-f(2)}{5-2}
$$

for some c in $(2,5)$. Using the information given in the statement

$$
\frac{f(5)-f(2)}{5-2}=\frac{f(5)-1}{3}=f^{\prime}(c) \leq 3
$$

From $\frac{1}{3}(f(5)-1) \leq 3$ some algebra gives $f(5) \leq 10$.
(8) Consider the function

$$
f(x)=\frac{x}{x^{2}+9}
$$

One of the following statements is true. Which one?
Solution: Since f is a rational function factor out an x^{2} on the top and bottom to get

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=0
$$

so f has a horizontal asymptote of $y=0$. This rules out all but 2 possible answers. To distinguish between the remaining two we need to see if $x=3$ is a global minimum or maximum. The derivative
is

$$
f^{\prime}(x)=\frac{9-x^{2}}{\left(x^{2}+9\right)^{2}}
$$

which is defined everywhere since the denominator is never zero. It is zero where the numerator is zero: $0=9-x^{2}=(3+x)(3-x)$. Thus $x=-3$ and $x=3$ are critical points. Evaluate $f(3)=\frac{3}{18}$ and $f(-3)=-\frac{3}{18}$. Next, note that $f^{\prime}(x)<0$ in $(-\infty, 3) \cup(3, \infty)$ and $f^{\prime}(x)>0$ in $(-3,3)$. Hence $f(x)$ is decreasing in $(-\infty,-3)$, then increasing in $(-3,3)$ and then decreasing again in $(3, \infty)$. Hence $f(x)$ has a local maximum at $x=3$ with value $f(3)=\frac{1}{6}$. This local maximum at $x=3$ is in fact a global maximum since $y=0$ is a horizonal asymptote.
(9) Let

$$
f(x)=\frac{x}{x+2} .
$$

After verifying that f satisfies the hypothesis of the Mean Value Theorem on the interval [0,2], find all numbers c that satisfy the conclusion of the Mean Value Theorem.

Solution: f is a rational function whose denominator is zero at $x=-2$. Since -2 is not in the interval $[0,2], f$ is continuous on $[0,2]$ and differentiable on $(0,2)$, so the conditions of the mean value theorem are satisfied. Calculate $f(0)=0$ and $f(2)=\frac{1}{2}$. We need to find all points c in $(0,2)$ with

$$
f^{\prime}(c)=\frac{f(2)-f(0)}{2-0}=\frac{\frac{1}{2}-0}{2}=\frac{1}{4}
$$

Use the quotient rule to get

$$
f^{\prime}(x)=\frac{2}{(x+2)^{2}}
$$

And solve for $f^{\prime}(x)=\frac{1}{4}$.

$$
\begin{aligned}
\frac{1}{4} & =\frac{2}{(x+2)^{2}} \\
(x+2)^{2} & =8 \\
x+2 & = \pm \sqrt{8}= \pm 2 \sqrt{2} \\
x & = \pm 2 \sqrt{2}-2
\end{aligned}
$$

Since $-2 \sqrt{2}-2<0$ this solution is not in the range $(0,2)$. But $2 \sqrt{2}-2=2(\sqrt{2}-1)$ is since $\sqrt{2}-1$ is between 0 and 1 . So the answer is $c=2 \sqrt{2}-2$.
(10) Consider the function

$$
f(x)=\frac{x}{x-1}
$$

One of the following statements is true. Which one?
Solution: Factor an x out of the top and bottom to get

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=1
$$

Thus the line $y=1$ is a horizontal asymptote to f. There is a vertical asymptote at $x=1$ where the denominator is zero. These observations rule out all but 2 of the answers. To distinguish between the two remaining we need to know where f is concave down. Find

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{1}{(x-1)^{2}} \\
f^{\prime \prime}(x) & =2(x-1)^{-3}
\end{aligned}
$$

$f^{\prime \prime}(x)$ is negative when $x-1$ is negative (since raising to the -3 power preserves the sign), and $x-1$ is negative when $x<1$. Thus f is concave down on the interval $(-\infty, 1)$.
(11) The position of a particle is given by

$$
s(t)=t^{5}-\frac{20}{3} t^{3}+6, \quad \text { for } t \geq 0
$$

(a) When is the particle moving to the right?
(b) What is the total distance traveled between $t=0$ seconds and $t=3$ seconds?

Solution: (a) The particle is moving to the right when its velocity is positive. Calculate the velocity

$$
v(t)=s^{\prime}(t)=5 t^{4}-20 t^{2}
$$

Factor it to find the zeros.

$$
5 t^{4}-20 t^{2}=5 t^{2}\left(t^{2}-4\right)=5 t^{2}(t-2)(t+2)
$$

which means $v(t)$ is zero at $t=-2, t=0$, and $t=2$. Since $t \geq 0$ ignore the zero at $t=-2$. By calculation $v(1)=5 \cdot-1 \cdot 3<0$ and $v(3)=5 \cdot 9 \cdot 1 \cdot 5>0$, and thus since v is continuous we know v is negative on $(0,2)$ and positive on $(2, \infty)$. So the particle is moving to the right when $t>2$.
(b) To find the total distance traveled we need to add up the distance traveled in each direction during the time interval $[0,3]$. For t in $[0,2]$ the particle is going left, and on $[2,3]$ it is going to the right.

For $[0,2] \quad|s(2)-s(0)|=\left|32-\frac{20}{3} \cdot 8+6-6\right|=\frac{64}{3}$
For $[2,3] \quad|s(3)-s(2)|=\left|3^{3}\left(9-\frac{20}{3}\right)+6-8\left(4-\frac{20}{3}\right)-6\right|=\left|27 \cdot \frac{7}{3}+\frac{64}{3}\right|=\frac{253}{3}$
So the total distance travelled is $\frac{64}{3}+\frac{253}{3}=\frac{317}{3}$ units.
(12) A melting ice cube is decreasing in volume at a rate of $10 \mathrm{~cm}^{3} /$ minute, but remains a cube as it melts.
(a) How fast are the edges of the cube decreasing when the length of each edge is 20 cm ?
(b) How fast is the surface area of the cube decreasing when the length of each edge is 20 cm ?

Solution: (a) Given a side of length x, the volume of the cube is $V=x^{3}$. If we think of V and x as functions of time (t) then the derivative of V with respect to t is

$$
\frac{d V}{d t}=3 x^{2} \frac{d x}{d t}
$$

The volume is decreasing at $10 \mathrm{~cm}^{3} / \mathrm{min}$., which means $\frac{d V}{d t}=-10$. So

$$
\frac{d x}{d t}=\frac{-10}{3 x^{2}}
$$

When $x=20$ we have $\frac{d x}{d t}=\frac{-10}{3 \cdot 20^{2}}=-\frac{1}{120} \mathrm{~cm} / \mathrm{min}$.
(b) Given the side length x, the cube has six square faces so the total surface area is $A=6 x^{2}$. Think of A and x as functions of t and take the derivative:

$$
\frac{d A}{d t}=12 x \frac{d x}{d t}
$$

When $x=20$ we know $\frac{d x}{d t}=-\frac{1}{120}$ from part (a). Substuting in these values gives $\frac{d A}{d t}=12 \cdot 20 \cdot \frac{-1}{120}=$ $-\frac{240}{120}=-2 \mathrm{~cm}^{2} / \mathrm{min}$.
(13) Let

$$
f(x)=3 x^{4}+16 x^{3}-30 x^{2}-2
$$

(a) What are the critical numbers for f ?
(b) If we restrict f to the interval $[-1,1]$, give the x and y values for the global maximum and the global minimum for f on this interval.

Solution: (a) Critical numbers are values for x where $f^{\prime}(x)$ either doesn't exist or is equal to 0 . The derivative is $f^{\prime}(x)=12 x^{3}+48 x^{2}-60 x$ which is a polynomial, so it is defined everywhere. To find the zeros, factor f^{\prime}

$$
12 x^{3}+48 x^{2}-60 x=12 x\left(x^{2}+4 x-5\right)=12 x(x+5)(x-1)
$$

Thus f^{\prime} has zeros at $x=0, x=-5$ and $x=1$ and these are all the critical numbers for f.
(b) The only critical numbers in the interval $[-1,1]$ are $x=0$ and $x=1$. Evaluate at these critical points and at the endpoints:

$$
\begin{aligned}
f(-1) & =-45 \\
f(0) & =-2 \\
f(1) & =-13
\end{aligned}
$$

So the maximum is at $(0,-2)$ and the minimum is at $(-1,-45)$.

